FWC collects evidence of a female panther north of Caloosahatchee River!

The Florida Fish and Wildlife Conservation Commission (FWC) Panther Team has collected strong evidence a female Florida panther has finally crossed the Caloosahatchee River in southwest Florida.

You can see their  press release here.

Photos courtesy of FWC.

I can’t believe you ate the whole thing!

The dry down this fall has left a wealth of fish for the wading birds. This Great Blue Heron has made the best of the bounty.

The fish in the video below was too much for him to swallow. It was too much for the water moccasin to swallow! The vultures and raccoon did not let it go to waste.

New Panther Family

We have a new family at Corkscrew. The kittens are 3-4 months old.

You can see more of the kittens at Donna Hampton's Trail Cam Tuesday

Aurora above Kleppjárnsstöðum

The two videos above are timelapse. The video below is realtime.

The Aurora Borealis (Northern Lights) and Aurora Australis (Southern Lights) are the result of electrons colliding with the upper reaches of Earth’s atmosphere.  The electrons are energized through acceleration processes in the downwind tail (night side) of the magnetosphere and at lower altitudes along auroral field lines. The accelerated electrons follow the magnetic field of Earth down to the Polar Regions where they collide with oxygen and nitrogen atoms and molecules in Earth’s upper atmosphere. In these collisions, the electrons transfer their energy to the atmosphere thus exciting the atoms and molecules to higher energy states. When they relax back down to lower energy states, they release their energy in the form of light. This is similar to how a neon light works. The aurora typically forms 80 to 500 km above Earth’s surface.

Earth’s magnetic field guides the electrons such that the aurora forms two ovals approximately centered at the magnetic poles. During major geomagnetic storms these ovals expand away from the poles such that aurora can be seen over most of the United States. Aurora comes in several different shapes. Often the auroral forms are made of many tall rays that look much like a curtain made of folds of cloth. During the evening, these rays can form arcs that stretch from horizon to horizon. Late in the evening, near midnight, the arcs often begin to twist and sway, just as if a wind were blowing on the curtains of light. At some point, the arcs may expand to fill the whole sky, moving rapidly and becoming very bright. This is the peak of what is called an auroral substorm.

Then in the early morning the auroral forms can take on a more cloud-like appearance. These diffuse patches often blink on and off repeatedly for hours, then they disappear as the sun rises in the east. The best place to observe the aurora is under an oval shaped region between the north and south latitudes of about 60 and 75 degrees. At these polar latitudes, the aurora can be observed more than half of the nights of a given year.

When space weather activity increases and more frequent and larger storms and substorms occur, the aurora extends toward the equator. During large events, the aurora can be observed as far south as the US, Europe, and Asia. During very large events, the aurora can be observed even farther from the poles. Of course, to observe the aurora, the skies must be clear and free of clouds. It must also be dark so during the summer months at auroral latitudes, the midnight sun prevents auroral observations. 

Northern Lights Timelapse

© Ralph Arwood 2017